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Abstract Annual cycles in day length are an important
consideration in any analysis of seasonal behaviour
patterns, since they determine the period within which
obligate diurnal or nocturnal animals must conduct all of
their essential activities. As a consequence, seasonal
variation in day length may represent an ecological
constraint on behaviour, since short winter days restrict
the length of the time available for foraging in diurnal
species (with long summer days, and thus short nights, a
potential constraint for nocturnal species). This paper
examines monthly variation in activity patterns over a 4-
year study of chacma baboons (Papio cynocephalus
ursinus) at De Hoop Nature Reserve, South Africa. Time
spent feeding, moving, grooming and resting are all
significant positive functions of day length, even before
chance events such as disease epidemics and climatically
mediated home range shifts have been accounted for.
These results provide strong support for the idea that day
length acts as an ecological constraint by limiting the
number of daylight hours and thus restricting the active
period at certain times of year. Day length variation also

has important implications across populations. Interpop-
ulation variation in resting time, and non-foraging activity
in general, is a positive function of latitude, with long
summer days at temperate latitudes apparently producing
an excess of time that cannot profitably be devoted to
additional foraging or social activity. However, it is the
short winter days that are probably of greatest importance,
since diurnal animals must still fulfil their foraging
requirements despite the restricted number of daylight
hours and elevated thermoregulatory requirements at this
time of year. Ultimately this serves to restrict the
maximum ecologically tolerable group sizes of baboon
populations with increasing distance from the equator.
Seasonal variation in day length is thus an important
ecological constraint on animal behaviour that has
important implications both within and between popula-
tions, and future studies at non-equatorial latitudes must
clearly be mindful of its importance.

Keywords Behaviour · Ecological constraints · Group
size · Seasonality · Time budgets

Introduction

An analysis of how a species distributes its time among
various activities is an essential precursor to understand-
ing the interrelations between its ecology and behaviour
(Struhsaker and Leland 1979). Where two activities
cannot be performed simultaneously, animals are forced
to schedule certain behaviours preferentially, such that
costs may be incurred by the reduced opportunities to
engage in other biologically important activities (McFar-
land 1974; Caraco 1979a, 1979b; Dunbar 1992a). As a
consequence, determining the ecological and demograph-
ic constraints on activity budget allocation and scheduling
decisions is a key issue underlying a detailed understand-
ing of mammalian socioecology.

Since the earliest studies, tentative generalisations
have been made concerning the relationship between
ecological factors (most notably diet and habitat struc-
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ture) and species’ activity budgets (Crook and Gartlan
1966; Crook 1970; Jarman 1974; Clutton-Brock and
Harvey 1977). A number of studies have proposed
correlations between seasonal variation in activities and
food availability (e.g. ungulates: Owen-Smith 1994;
carnivores: Williams et al. 1997; primates: Clutton-Brock
1977; Post 1981; Lawes and Piper 1992; Matsumoto-Oda
2002), while others have found direct relationships
between activity and climatic variables (rodents: Cox
and Hunt 1992; ungulates: Roberts and Dunbar 1991;
Owen-Smith 1998; primates: Davidge 1978; Fa 1986;
Lawes and Piper 1992; Baldellou and Adan 1997).
Furthermore, analyses within species have shown varia-
tion in time budgets across primate populations to be
related to local climatic conditions (Dunbar 1992a,
1992b; Williamson 1997), although annual variation in
baboon time budgets at Amboseli was not easily
explained in this way (Bronikowski and Altmann 1996).

While seasonality is undoubtedly important in ac-
counting for intra-annual variation in activity levels,
previous studies have almost exclusively focussed on
seasonal variation in food availability or climatic param-
eters. Relatively little attention has been paid to how day
length variation at temperate latitudes might itself operate
as an ecological constraint. Traditionally, studies of the
seasonal importance of day length have tended to focus
on photoperiodic influences on hormone levels and
reproduction (e.g. Malpaux et al. 1996; O’Brien et al.
1993) or on metabolic rates (Perret et al. 1998), thermo-
regulation (Aujard and Vasseur 2001) or body weight
(Mercer et al. 2000). However, in exclusively diurnal (or
nocturnal) species, seasonal variation in day length could
represent a significant constraint, since it restricts the
length of the active period.

Baboons (Papio spp.) are almost exclusively diurnal,
and as a consequence are forced to perform most of their
essential activities during the daylight hours. Thus where
day length varies on a seasonal basis, specific activities
may be compressed at certain times of year if the animals
are to fulfil their foraging requirements (Dunbar 1988).
Furthermore, since short winter days are likely to coincide
with periods of lower temperature, energy requirements
may also be elevated due to increased thermoregulatory
costs, compounding the significance of the day length
restrictions. At the other extreme, long summer day length
could initially allow for strategic flexibility in foraging
(Lawes and Piper 1992), socializing, or thermoregulation
(Hill 2003), but may ultimately generate excess time that
cannot profitably be used for any active purpose, leading
to elevated levels of inactivity. As a consequence, both
direct climatic constraints and patterns of day length
variation could be important ecological factors underlying
seasonal levels of activity allocation at more temperate
latitudes. To date, however, few studies have sought to
examine their importance.

Since the degree of day length seasonality co-varies
with latitude, one implication is that latitude may also be
important in accounting for behavioural differences
between populations. Previous studies of the importance

of latitude have examined relationships at a relatively
large scale, and have considered factors such as species
geographical ranges and Rapoport’s Rule (Cardillo 2002),
body size and Bergmann’s Rule (Blackmann and Gaston
1996), life history traits (Cardillo 2002) and species
richness (Owens et al. 1999). Relatively little attention
has focussed on how latitude might account for variation
in behaviour between populations of a single species. If
day length does operate as an ecological constraint at the
population level, then latitude and the degree of day
length seasonality is likely to result in observable
differences between populations. Again, however, few
studies have sought to examine this possibility.

Here we present data on the behavioural patterns of a
troop of chacma baboons (Papio cynocephalus ursinus)
inhabiting a temperate locality to assess the impact of day
length and climatic variables on seasonal patterns of
activity. In addition, we also address the implications of
latitude in accounting for variation in the behavioural
ecology of baboons in sub-Saharan Africa.

Methods

Study site

De Hoop Nature Reserve (20�24'E, 34�27'S) is a coastal reserve
situated close to Cape Agulhas, Western Cape Province, South
Africa. Vegetation is dominated by coastal fynbos, a unique and
diverse vegetation type comprising Proteacae, Ericaceae, Restio-
naceae and geophyte species. The reserve ranges in altitude from 0
to 611 m and has a Mediterranean climate, with a mean annual
rainfall of 428 mm and mean annual temperatures of 17.0�C.
However, due to its southerly latitude, De Hoop experiences
considerable seasonal variation in both rainfall and temperature, as
well as day length variation that is more extreme than at any other
sub-Saharan African site (range from 9.8 h to 14.2 h). A more
detailed description of the ecology of the reserve is given in Hill
(1999).

Behavioural data

Data were collected over a 4-year period from March 1997 to
February 2001, although no data are available for March 2000. The
data are from a single troop of chacma baboons that ranged in size
from 33 to 50 individuals, although increases in group size over the
course of the study were interrupted by a disease epidemic resulting
in large-scale mortality (Barrett and Henzi 1998) and subsequent
immigrations into the troop (Henzi et al. 2000). This epidemic
coincided with heavy rains in early 1998 that caused a flooding of
the vlei, a large land-locked body of brackish water at the centre of
the group’s ranging area. This resulted in a marked home range
shift as access to certain areas of the former range became restricted
(Dixon 2001).

The baboons were followed on foot from a distance of a few
metres and data were collected by means of instantaneous scan
samples (Altmann 1974) at 30-min intervals. At each sample point,
information was recorded on the identity and activity state (feeding,
moving, grooming or resting) of all visible adult individuals.
Analyses are restricted to these four activities since previous studies
have shown them to account for over 95% of a baboon’s daily
activity (Dunbar 1992a). The data set consists 4,187 observation
hours (mean of 89.1 h per month) and comprises 11,751 scans with
a mean of 3.04 individuals per scan. Following the disease
epidemic and home range shift, 2,813 h of data are available (mean
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of 82.7 h per month), consisting of 9,189 scans and a mean of 2.22
individuals per scan.

In order to ensure that activity budgets were not biased by
uneven data collection across the day (since certain activities are
performed more often at particular times of day: Clutton-Brock and
Harvey 1977), data were averaged for each hour before mean daily
time budgets were computed for each month (see also Bronikowski
and Altmann 1996). However, seasonal trends in monthly percent-
age time budgets may disguise, or actually contradict, the
underlying patterns of activity (Lawes and Piper 1992; Hill et al.,
unpublished data). As a consequence, the seasonal analyses
presented here use time per day (in hours) spent in each activity
as the dependent variable (following Davidge 1978; Lawes and
Piper 1992; Agetsuma and Nakagawa 1998; Hill et al., unpublished
data). These data were not transformed since none were found to
differ significantly from a normal distribution (Kolmogorov-
Smirnov: P>0.05).

To examine the importance of day length variation and latitude
in accounting for population variation in baboon behaviour, we
extracted data from the literature on mean annual time budgets
from 16 long-term studies of baboons. These data are primarily
those utilised by Dunbar (1992a), supplemented with additional
data from two populations: De Hoop (feed 42.7%, move 27.1%,
groom 15.1%, rest 13.3%) and Mkuzi, South Africa (feed 36.3%,
move 30.2%, groom 12.1%, rest 20.6%: Gaynor 1994). Unlike the
intrapopulation analyses, percentage time budget data are appro-
priate here, since for all populations day length is standardised to an
approximate 12-h light-dark cycle over the course of the year. The
population data were natural log transformed for parametric
analysis.

Data analysis

A combination of stepwise and backwards least squares regression
analysis was used to determine the environmental factors that best
account for seasonal and interpopulation variation in activity
patterns. In doing so, a hierarchical order was imposed on the four
activities when constructing the equations in order to reflect the
biological priorities of each activity to the animals (sensu Dunbar
1992a; but see also Altmann 1980). Feeding time is taken to be of
highest priority, such that it is independent of time spent in other
activities. Moving time, however, may be partially constrained by
time spent feeding, and so feeding time is included as an
independent variable. Although grooming is an important activity
in social primates, we assume it must in part be constrained by the
foraging variables, with time spent feeding and moving thus
included as independent variables. Finally, no restrictions were
placed upon the independent variables for resting since this is
considered of lowest biological priority, with feeding, moving and
grooming all included as potential independent variables. All
equations were assessed to ensure that the variables incorporated
into the final models were both statistically and computationally
independent (e.g. no overlapping rainfall variables were included).
All tests are two-tailed, with the level for significance set at default

levels of P=0.05 for inclusion and P=0.10 for exclusion from the
models.

Results

Intrapopulation relationships

Table 1 displays the least square regression equations of
ecological and behavioural variables on hours per day
spent in the four activities. A consistent feature of the
equations is that all contain a significant positive function
of day length. However, the equations for feeding,
moving and grooming contain negative functions of
group size, and although group size is not a significant
component of the equation for resting time, a positive
coefficient of group size is the first variable stepped into
the model before being removed at the final step. These
relationships with group size are contrary to almost all of
those previously reported in the literature for baboons,
where, for example, larger groups spend more time
engaged in foraging activity (Slatkin and Hausfater 1976;
Stacey 1986; Gaynor 1994).

As stated, a disease epidemic and marked home range
shift occurred early in 1998, and these two independent
events could significantly affect the behaviour patterns
displayed by the study troop. The new ranging areas were
of lower quality in terms of food availability (Hill 1999),
and thus because the troop was dramatically reduced in
size when it started to use these areas more heavily, this
could produce spurious relationships with respect to
group size. Certainly changes in the nature of the
grooming relationships before and after the disease
epidemic and home range shift at De Hoop have been
reported (Barrett et al. 2002), and different ecological
relationships were reported before and after a home range
shift at Amboseli (Bronikowski and Altmann 1996). The
original analyses were thus re-run for the period following
the disease epidemic and home range shift to rule out
these confounding effects. This period was selected
because it contained the largest amount of available data,
and since the primary interest here is in the impact of day
length on behaviour patterns, the comparable relation-
ships for the earlier period are not presented. However,

Table 1 Least square regression equations of environmental vari-
ables on hours per day spent in activity by chacma baboons (Papio
cynocephalus ursinus), where D is day length (hours), T is the mean
monthly temperature (�C), N is the group size, and RN012 is the sum
of the rainfall in the study month and preceding 2 months (mm).
Variables not included in the final models (but included in the
initial list of independent variables) are: MaxT the mean monthly
maximum temperature (�C); MinT, the mean monthly minimum

temperature (�C); RN0, the study month rainfall (mm); RN1, the
rainfall in the month preceding the study month (mm); RN12, the
sum of the rainfall in the 2 months preceding the study month
(mm); and RN123, the sum of the rainfall in the three months
preceding the study month (mm). Order of independent variables in
equations reflects relative importance as indicated by size of
standardised coefficient

Activity Equation r2 F P

Feeding F=6.12+0.43D–0.17T–0.087 N 0.221 (3,43) 4.06 <0.02
Moving M=6.91–0.50F–0.0041R012+0.14D–0.060 N 0.497 (4,42) 10.37 <0.0001
Grooming G=3.78+0.030D–0.46F–0.48 M–0.043 N 0.550 (4.42) 12.84 <0.0001
Resting R=–0.59+0.95D–0.89F–0.92 M–0.91G 0.979 (4,42) 478.97 <0.0001
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the results do remain broadly similar for this earlier
period (see also Hill 2003).

The mean numbers of hours per day spent in each
activity per month in the period following the disease
epidemic and home range shift are displayed in Fig. 1.
The new regression equations relating climatic and
behavioural variables to hours per day spent in the four
activities are in Table 2. All four activities are again
significant positive functions of day length, with day
length the main effect accounting for the largest propor-
tion explained variance for all but moving behaviour
(feeding: partial r2=0.262, t=3.37, P=0.002; moving:
partial r2=0.078, t=2.21, P=0.035; grooming: partial

r2=0.260, t=7.26, P<0.001; resting: partial r2=0.731,
t=27.10, P<0.001). Feeding time is a significant positive
function of day length and of rainfall in the month
preceding the study month, as well as a negative function
of mean monthly temperature. Moving time is a positive
function of day length, a negative function of time spent
feeding and negative functions of two measures of rainfall
(study month rainfall and the sum of the rainfall in the
3 months preceding the study month). Time spent
grooming is a positive function of day length and
negative functions of hours per day spent in feeding and
moving activity. Similarly, time spent resting is a positive
function of day length, negative functions of hours per

Fig. 1 Hours per day spent in a
feeding, b moving, c grooming
and d resting by chacma ba-
boons (Papio cynocephalus
ursinus) for the period follow-
ing the disease epidemic and
home range shift. Data for
March are from a single year;
n=3 years in all other cases

Table 2 Least square regression equations of environmental vari-
ables on hours per day spent in activity for the period following the
disease epidemic and home range shift. Initial list of independent

variables and abbreviations as for Table 1. Order of independent
variables in equations reflects relative importance as indicated by
size of standardised coefficient

Activity Equation r2 F P

Feeding F=1.13+0.61D–0.21T+0.011RN1 0.307 (3,30) 4.43 <0.02
Moving M=3.41–0.35F+0.19D–0.0030RN123–0.0056RN0 0.532 (4,29) 8.25 0.0001
Grooming G=2.55+0.34D–0.59F–0.49 M 0.713 (3,30) 24.90 <0.0001
Resting R=–0.22+1.03D–0.97F–1.00 M–0.98G–0.031T 0.986 (5,28) 390.29 <0.0001
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day spent feeding, moving and grooming, and also a
negative function of mean monthly temperature.

Interpopulation relationships

Since day length is the main factor underlying seasonal
variation in activity levels at De Hoop, one obvious
implication is that day length variation (and thus latitude)
might be an important variable accounting for some of the
variation in activity levels between populations. In
particular, the proportion of time spent resting, as well
as non-foraging time more generally, may show the
strongest relationships with latitude, since the long
summer days could generate an excess of time that
cannot be used strategically for another activity. Although
longer days may initially allow for additional or more
flexible foraging and social activities, as distance from the
equator increases, summer day lengths may become so
long that an excess of time is generated that cannot
profitably be used for additional essential activities. As a
consequence, we would anticipate proportion of time
spent inactive (or resting) to increase with latitude across
populations, all else held equal. Data on mean annual time
budgets from 16 baboon populations are available to test
this prediction, with the best-fit equations relating time
budget allocations to climatic conditions at each site
given in Table 3.

The proportion of time spent feeding decreases as
mean annual temperatures increase, with percentage time
spent moving increasing with group size and also
decreasing as mean annual temperatures increase. Groom-
ing time is a negative function of percentage feeding time
and a positive function of the plant productivity index.
Finally, resting time is a negative function of both feeding
and grooming time, and a positive function of latitude.
Interestingly, if the regression is rerun to consider total
non-foraging time (percentage time spent grooming and
resting combined), then a similar equation is produced
(r2=0.904, F(3,12)=37.54, P<0.0001): ln (non-foraging) =
7.53 – 0.86 ln (Feeding) – 0.33 ln (moving) + 0.05 ln
(latitude). As predicted, therefore, latitude is an important
variable accounting for some of the observed variation
between populations in activity patterns, with populations
at increasing distance from the equator spending more

time in non-foraging activities on an annual basis due to
the excess time generated by long summer day lengths.

The ultimate importance of day length variation in
accounting for interpopulation variation in behaviour in
diurnal species probably lies in the constraints imposed by
short winter days since these could act as a bottleneck
within which the animals must nevertheless conduct all of
their essential activities. Ultimately, this could constrain
populations at temperate latitudes to smaller group sizes
than populations experiencing an identical set of ecolog-
ical parameters at the equator. Fig. 2 plots the maximum
group sizes observed for 30 baboon populations, where
accurate group counts are available for at least two
groups, against the minimum day length for that popu-
lation. Maximum group size (as opposed to mean group
size) is used here since day length should set a ceiling on
the maximum possible size of group; although this may
impact upon observed population mean group size, it is
the maximum possible group size that is ultimately
constrained. Fig. 2 illustrates that short winter days do
appear to constrain population maximum group sizes,
since, with the exception of the Mt. Assirik population
(open circle), maximum observed group sizes increase as

Fig. 2 Observed maximum group sizes across 30 baboon popula-
tions (for which a minimum of two groups have been counted)
against the minimum day length experienced by that population

Table 3 Least square regression equations of environmental vari-
ables on population time budgets, where T is mean annual
temperature (oC), N is group size, PPI is the plant productivity
index (the number of months per year receiving more rainfall (mm)
than twice the mean annual temperature (oC) for that site: le
Hou�rou 1984; see also Hill and Dunbar 2002), and L is the

latitude. Independent variables included in the analyses but not
incorporated into any of the final models are: RN, the mean annual
rainfall (mm); S, Shannons index of rainfall diversity; and A,
altitude (m). Order of independent variables in equations reflects
relative importance as indicated by size of standardised coefficient

Activity Equation r2 F P

Feeding ln F=6.23–0.86 ln T 0.242 (1,14) 4.47 0.053
Moving ln M=3.75+0.29 ln N–0.54 ln T 0.586 (2,13) 9.18 0.003
Grooming ln G=3.28+0.60 ln PPI–0.54 ln F 0.483 (2,13) 6.07 <0.02
Resting ln R=8.68–1.36 ln F–0.43 ln G+0.10 ln L 0.825 (3,12) 18.89 <0.0001
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minimum day lengths increase. Thus day length variation
at temperate latitudes does appear to limit an animals
behavioural options, such that baboons are constrained to
living in smaller groups at these localities.

Discussion

Day length is an important ecological constraint on an
individual’s behavioural options since it sets the period
within which obligate diurnal or nocturnal animals must
perform their essential behaviour (Dunbar 1988). How-
ever, while a number of studies have suggested relation-
ships between primate behaviour and day length (Hall
1962; Davidge 1978; Fa 1986; Lawes and Piper 1992;
M�nard and Vallet 1997; Agetsuma and Nakagawa 1998),
none have set out to formally examine its importance. The
results presented here confirm that even before random
events such as disease epidemics or restricted access to
former areas of the home range have been accounted for,
day length acts as an ecological constraint by limiting the
number of hours within which animals must balance their
activity budgets. The importance of day length variation
is further reflected in the fact that latitude is important in
explaining behavioural variation between populations,
since short winter days at more temperate latitudes
produce a bottleneck that ultimately limits populations
to smaller maximum group sizes as distances from the
equator increase.

Day length was a significant factor in all four
equations relating activity levels to ecological and
behavioural variables. Similar relationships with day
length were reported for moving and resting in Japanese
macaques (Agetsuma and Nakagawa 1998) and resting in
Barbary macaques (M�nard and Vallet 1997), while
Lawes and Piper (1992) reported a relationship between
feeding and day length for the samango monkeys at Cape
Vidal. This suggests that the constraints imposed by day
length are generally applicable to diurnal animals (or
primates at least) inhabiting temperate environments.
However, although day length is the primary parameter
underlying seasonal variation in activity levels in most
cases, factors other than day length were incorporated into
the models such that the equations require some inter-
pretation.

With respect to feeding time, the relationship with day
length reflects the constraints imposed by short winter
days such that time available for feeding is limited. As the
number of daylight hours increases, however, time spent
feeding can increase, potentially allowing for a more
flexible foraging strategy during the summer months
when time is less constrained (Lawes and Piper 1992).
However, energetic requirements are likely to be reduced
as temperatures rise and the relationship with mean
monthly temperature probably reflects these thermoreg-
ulatory considerations. Such a trade off is clear from
Fig. 1a, where hours per day spent feeding increases
either side of mid-winter (July) before levelling off and
even declining in the warm summer months. The

relationship with rainfall in the month preceding the
study month is more problematic. Relationships with
rainfall are often taken to reflect seasonal food availabil-
ity, since rainfall is known to be a reliable predictor of
primary productivity in sub-Saharan habitats (Deshmukh
1984; le Hou�rou 1984). However, if this were the case
here we would expect the relationship to be negative, not
positive. One possibility is that this relationship may also
partially reflect thermoregulatory considerations, since
the months following those of highest rainfall are in mid-
winter when temperatures are lowest. This relationship
could thus reflect the increased nutritional requirements
of the cold winter months, although little confidence can
be placed in this interpretation.

Moving time is also a positive function of day length,
again reflecting the constraints imposed by short winter
days and the potential for more flexible foraging strate-
gies in the longer summer months. Within this context,
the relationship with feeding time probably reflects the
trade-offs that occur between activities when time is
limited, since a higher proportion of foraging time
(defined as feeding plus moving) is spent feeding when
foraging time is constrained (Henzi et al. 1997). Similar
trade-offs with feeding were reported by Agetsuma and
Nakagawa (1998). Rainfall is also an important determi-
nant of moving time. The relationship with rainfall in the
three months preceding the study month is likely to reflect
the influence of rainfall on primary productivity, a
relationship that has been reported for other studies
(Barton 1989; Post 1982). While the relationship with
rainfall in the study month might also be related to this, its
importance in determining surface water availability is
also likely to be important, since this is also a key factor
determining baboon ranging patterns (Barton et al. 1992).

Grooming time and resting time are primarily positive
functions of day length and negative functions of the
other activity categories. This suggests that time alloca-
tion to both activities is essentially determined in the light
of the time left over after foraging (see Altmann 1980;
Dunbar 1992a; Bronikowski and Altmann 1996). Since
this ‘spare’ time increases with day length, time spent
grooming and resting also increase accordingly. However,
the negative relationship between time spent resting and
mean monthly temperature suggests that the relationship
with day length is not linear. Indeed, a quadratic
component of day length is incorporated into the models
if available as an independent variable. Thus due to the
correlation between monthly temperatures and day length,
the relationship with temperature reflects slightly elevated
levels of resting at low temperatures. It is clear from
Fig. 1d that resting time levels off at a minimum value of
30 min per day. While it is reasonable to consider resting
as a reservoir of ’uncommitted’ time that can be drawn of
for other activities when required (Dunbar and Sharman
1984), it may still perform specific functions that delimit
a minimum time allocation. Certainly a number of
previous studies have suggested more ’active’ functions
for resting, such as energy conservation (Raemakers
1980; Dasilva 1992), a response to heat loading (Stelzner
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1988; Hill 2003) or as an interruption of other activities
for vigilance (Cowlishaw 1998). Further research is
required if we are to understand and identify the
proportion of resting time that is committed for specific
purposes and that which is uncommitted and free to draw
upon for other activities. Nevertheless, it is clear that day
length is the primary determinant of time allocated to
resting across months at temperate latitudes.

Day length is thus the most important factor account-
ing for seasonal variation in activity levels at De Hoop.
However, similar ecological relationships to those in the
intrapopulation analyses are observed across populations.
Most importantly, resting time is a positive function of
latitude, once the constraints imposed by time allocated to
feeding and grooming have been accounted for, although
variation in all four activities may be explained on the
basis of ecological parameters at each site.

Feeding time is a negative function of mean annual
temperature, and there are likely to be two important
elements to this relationship. Firstly, the proportion of
fruit in the diet increases with temperature (Hill and
Dunbar 2002) and this relationship thus reflects the
benefits of a high quality diet. However, the negative
relationship with temperature is also likely to reflect
thermoregulatory considerations, since energetic require-
ments will decline with temperature. Moving time is also
a negative function of temperature, although a positive
relationship with group size has the greatest effect within
the model. The relationship with group size reflects the
importance of intragroup feeding competition in forcing
animals to move further to satisfy their nutritional
requirements as group size increases, once differences
in ecology and diet between sites (reflected in the
relationship with temperature) are held constant.

The primary productivity index (which reflects the
likely number of growing months in sub-Saharan habitats:
Hill and Dunbar 2002) forms a significant component of
the equation for grooming time, with populations in more
productive habitats (i.e. longer growing seasons) engaged
in higher levels of grooming. However, the proportion of
time spent feeding also forms a significant component of
the equation time, confirming that time spent grooming is
primarily determined in the light of time left over from
foraging (Altmann 1980; Dunbar 1992a). Similarly time
spent resting is a negative function of the time spent
feeding and grooming. However, the most important
relationship here is that resting time is also significant
positive function of latitude, and a similar result is
obtained if non-foraging activity is considered as a single
behavioural category. Thus, with increasing distance from
the equator, populations spend more time resting on an
annual basis due to the apparently excess time generated
by long summer day lengths. However, the ultimate
importance of day length variation appears to lie in the
constraints imposed by the short winter days.

Short day lengths during the winter months represent a
bottleneck which diurnal species must conduct all of their
essential activities, despite the limited number of daylight
hours. While animals may be able to compromise on

certain activities (e.g. grooming) for a couple of months
in order to free up sufficient time for foraging, they must
nevertheless live in social contexts that allow them to pass
through these bottlenecks without excessive risk of
mortality. As a consequence, day length variation at
temperate latitudes constrains populations to smaller
maximum ecologically tolerable group sizes than would
be the case for an identical set of ecological parameters in
an equatorial population. The one exception to this
appears to be the Guinea baboon (P. c. papio) population
at Mt Assirik, Senegal. While this is the only Guinea
baboon population of in the sample, it is unlikely that
phylogenetic effects are important. Rather, groups in this
population habitually fragmented into small unstable
foraging parties that often ranged and slept alone
(Sharman 1981). As a consequence it seems that the
maximum observed group size for this population is
unlikely to represent the group size that is sustainable as a
long-term entity. The constraints imposed by short winter
days do thus appear to limit maximum group sizes within
populations at non-equatorial latitudes.

Day length is clearly an important ecological con-
straint at both intra- and interpopulation levels. It is
important to note, however, that such constraints are only
really significant in species that restrict all of their
essential activity to the daylight (or darkness) hours.
Cathemeral activity patterns (significant levels of activity
during the day and night: Tattersall 1987) are well
documented for lemurs (e.g. Andrews and Birkenshaw
1998; Curtis et al. 1999), and other mammals (e.g. Owen-
Smith 1998; Rodrigues and Monteiro-Filho 2000; Lin-
nane et al. 2001). As a consequence, these species are
unlikely to be constrained in the same way by day length,
since any shortfalls in activity during the daylight hours
can potentially be made up over the course of the night (or
vice versa). Indeed, Curtis and Rasmussen (2002) suggest
that the flexibility afforded by cathemerality may have
significant adaptive benefits in terms of thermoregulation
and avoiding predators, thus making it a highly efficient
behavioural strategy. Baboons, however, appear con-
strained to a diurnal lifestyle, and the nocturnal hunting
behaviour of many savannah carnivores may preclude
cathemeral strategies in terrestrial primates, and necessi-
tate the use of sleeping sites as predator refuges (Ham-
ilton 1982). The consequence of this, however, is that
baboons are restricted in their activity by the length of the
daylight period, such that day length is an important
constraint on behaviour at non-equatorial latitudes. Day
length is clearly an ecological parameter that should be
given greater precedence in future studies, and further
work on obligate diurnal (or nocturnal) species inhabiting
temperate localities is clearly required if we are to fully
understand it importance.
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