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Summary

1. Understanding resource selection and quantifying habitat connectivity are fundamental to

conservation planning for both land-use and species management plans. However, data sets

available to management authorities for resource selection and connectivity analyses are often

highly limited and fragmentary. As a result, measuring connectivity is challenging, and often

poorly integrated within conservation planning and wildlife management. To exacerbate the

challenge, scale-dependent resource use makes inference across scales problematic, resource

use is often modelled in areas where the species is not present, and connectivity is typically

measured using a source-to-sink approach, erroneously assuming animals possess predefined

destinations.

2. Here, we used a large carnivore, the leopard Panthera pardus, to characterise resource use

and landscape connectivity across a vast, biodiverse region of southern Africa. Using a range

of data sets to counter data deficiencies inherent in carnivore management, we overcame

methodological limitations by employing occupancy modelling and resource selection func-

tions across three orders of selection, and estimated landscape-scale habitat connectivity –
independent of a priori source and sink locations – using circuit theory. We evaluated whether

occupancy modelling on its own was capable of accurately informing habitat connectivity,

and identified conservation priorities necessary for applied management.

3. We detected markedly different scale-dependent relationships across all selection orders.

Our multi-data, multi-scale approach accurately predicted resource use across multiple scales

and demonstrates how management authorities can more suitably utilise fragmentary data

sets. We further developed an unbiased landscape-scale depiction of habitat connectivity, and

identified key linkages in need of targeted management. We did not find support for the use

of occupancy modelling as a proxy for landscape-scale habitat connectivity and further

caution its use within a management context.

4. Synthesis and applications. Maintaining habitat connectivity remains a fundamental com-

ponent of wildlife management and conservation, yet data to inform these biological and eco-

logical processes are often scarce. We present a robust approach that incorporates multi-scale

fragmentary data sets (e.g. mortality data, permit data, sightings data), routinely collected

by management authorities, to inform wildlife management and land-use planning.
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We recommend that management authorities employ a multi-data, multi-scale connectivity

approach – as we present here – to identify management units at risk of low connectivity.

Key-words: circuit theory, conductance, fragmentation, landscape resistance, land-use

planning, leopard, occupancy modelling, Panthera pardus, permeability, resource selection

functions

Introduction

Habitat loss, fragmentation and degradation are primary

causes of global biodiversity loss (Fahrig 2003). Habitat

connectivity confers ecosystems with greater resilience

towards disturbance (Olds et al. 2012), and ultimately

facilitates species persistence (Doerr, Barrett & Doerr

2010). Conservation of connectivity has thus become a

well-established concept (Zeller, McGarigal & Whiteley

2012), which seeks to maintain or restore genetic exchange

between populations (Stockwell, Hendry & Kinnison

2003), thus reducing levels of inbreeding and genetic drift

(Soul�e & Mills 1998), and provides opportunities for miti-

gating the negative effects of environmental and demo-

graphic stochasticity in a changing world (Hodgson et al.

2009). Although globally recognised, connectivity is often

poorly considered, or simply does not feature, within

wildlife management. As a fundamental component of

connectivity conservation, practitioners must identify

resources within habitats that facilitate species movement

and persistence. Several methods are available to model

resource selection and connectivity (Zeller, McGarigal &

Whiteley 2012); however, none are without limitations.

First, resource selection is scale-dependent, such that

inference at one scale may not adequately explain

resource use at another (Boyce 2006). Second, resource

selection within a used-available design is constrained by

an ‘asymmetry of errors’ (Boyce 2006), where presence

data are observed and known with certainty, but absence

data are less certain and often randomly assumed

(MacKenzie et al. 2006). Third, connectivity is often mod-

elled using a source-to-sink approach (McRae et al.

2008), which assumes that animals have a predefined des-

tination (Koen et al. 2014). To overcome the constraints

of scale dependency, resource selection can be integrated

across multiple scales (DeCesare et al. 2012; Martin et al.

2012); while occupancy modelling may be used to account

for imperfect detection and more accurately capture

resource use at appropriate scales (Gu & Swihart 2004).

Similarly, to overcome source-to-sink limitations, connec-

tivity can be mapped across the landscape – irrespective

of predefined destination locations – using unbiased

spatial techniques (Koen et al. 2014).

Here, we use a wide-ranging large carnivore, the leop-

ard Panthera pardus, as a model species to estimate

resource use and landscape connectivity across leopard

range in Limpopo Province, South Africa (hereafter ‘Lim-

popo’). Leopards are long distance dispersers (Fattebert

et al. 2015). Their high vagility, and ecological and eco-

nomic significance (Dalerum et al. 2008; Lindsey et al.

2012; Maciejewski & Kerley 2014) make leopards an ideal

candidate species to identify landscape-scale conservation

priorities. Using a range of techniques that overcome the

limitations mentioned above, we estimated leopard

resource selection across three orders of scale (Meyer &

Thuiller 2006): S1, first-order population-level selection

across the study area; S2, second-order landscape-level

selection across key leopard areas; and S3, third-order

individual-level selection across individual home ranges.

Specifically, by using occupancy modelling to infer proba-

ble locations that are available to leopards across the

broader landscape (S1), and resource selection functions

(RSFs) to link finer-scaled habitat relationships (S2 and

S3), we produce a scale-integrated description of leopard

resource use. We use this to develop an unbiased land-

scape-scale representation of leopard habitat connectivity

using circuit theory to identify critical movement

pathways across the region (McRae et al. 2008). Since

broad-scale occupancy data can be conveniently and

cheaply collected using questionnaire surveys (Zeller et al.

2011), we evaluate whether occupancy modelling on its

own is capable of accurately informing habitat connectiv-

ity (as derived from circuit theory); with the intention of

providing a simple method of incorporating both occu-

pancy and connectivity analyses under a single frame-

work. Finally, we show how our multi-scale approach can

be used to identify conservation priorities. Our results

provide an unbiased landscape-scale depiction of leopard

resource use and connectivity optimised for both finer-

and coarser-scaled management objectives applicable for

large carnivore conservation and land-use planning more

generally.

Materials and methods

STUDY AREA

Limpopo (c. 125 977 km2; Fig. 1) is rich in biodiversity and com-

prises the largest proportion of suitable leopard habitat in South

Africa (Swanepoel et al. 2013). A number of formally protected

areas occur throughout Limpopo, the most significant being the

Kruger National Park (KNP). KNP represents an important

source population for leopards within the study area, and is lar-

gely unaffected by human-mediated disturbance (Bailey 2005).

Outside of KNP, leopards in Limpopo – and South Africa more

generally – are managed within geographical catchments repre-

senting leopard management units (LMUs). The primary
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carnivore management practices in Limpopo (i.e. trophy hunting

and problem animal control) are strictly designated within LMUs

(Pitman et al. 2015).

FIRST-ORDER (S1) SCALE OF SELECTION

In order to delineate leopard distribution at the broadest scale,

we developed a multi-season occupancy model using question-

naire surveys (Zeller et al. 2011). The study area (Limpopo and

buffer zone; Fig. 1) was divided into 596 sampling cells

(20 9 20 km). A random stratified sampling approach was used

to select a subset of sampling cells to conduct interviews with

local inhabitants across Limpopo (Fig. S1, Supporting Informa-

tion). Respondents acted as surveyors within their ‘area of knowl-

edge’ defined by a single or group of sampling cells, where each

interview from the same sampling cell was considered a separate

replicate (Zeller et al. 2011). To avoid including residents that

spent very little time on their properties, interviews specifically

targeted individuals who were resident within their ‘area of

knowledge’ at least twice per month for a minimum of 1 year.

Detections comprised a direct sighting of a leopard or direct

observation of sign (e.g. tracks, scat, vocalisations or cached kill).

To assess the credibility of each respondent, we asked them to

identify photographs of four local species and the tracks of five

local species (Fig. S1). If a respondent was considered non-cred-

ible by failing to correctly identify leopard during the vetting pro-

cess, their data were excluded from all analyses. Surveys were

conducted within 98 sampling cells during November 2013

(n = 1024 respondents). In November 2014 (n = 736) and

November 2015 (n = 560), the same respondents were contacted

via telephone to conduct the questionnaire verbally. Respondent

attrition across years was due to death, change of contact details

or residency. A further ground survey was conducted during

November 2015 to increase respondent sample size (n = 599 addi-

tional respondents) across a randomly stratified subset of sam-

pling cells (n = 55). The distribution of S1 data can be visualised

in Fig. S2.

For multi-season occupancy analyses, we used the package un-

marked (Fiske & Chandler 2011) within the R statistical environ-

ment (R Core Team 2015). Interview responses resulted in

detection/non-detection matrices, with a maximum of 40 replicates

per sampling cell. Due to potential fluxes in leopard occupancy

over the sampling intervals, the assumption of population closure

was violated (MacKenzie et al. 2006), which changed the occu-

pancy parameter (w) from ‘proportion of area occupied’ to ‘pro-

portion of area used’. This new interpretation was sufficient to

meet our goals, since we were interested in the use of sampling cells,

rather than occupation of them (Zeller et al. 2011). We used a suite

of standardised (mean = 0; standard deviation = 1) resource vari-

ables expected to influence leopard distribution (Table S1), and

extracted mean values for each resource variable across each sam-

pling cell. Multi-season occupancy modelling seeks to estimate

probabilities of occupancy, detection (P), colonisation (c) and

extinction (ϵ). We modelled each component (i.e. w, P, c, ϵ) as func-
tions of resource variables using logit link functions (MacKenzie

et al. 2006) by employing a sampling design whereby surveyors (i.e.

respondents) visit a sample of M sampling cells and record the bin-

ary response Yij of species detection (Y = 1) or non-detection

Fig. 1. Location of the study area situated between northern South Africa, Botswana, Zimbabwe and Mozambique. The grey region

around Limpopo Province, South Africa (‘Limpopo’; black polygon) represents the 50 km buffer used to develop an unbiased landscape

permeability map. Limpopo represents a highly biodiverse region of southern Africa, comprising three UNESCO Biosphere Reserves:

Waterberg Biosphere Reserve (WBR), Vhembe Biosphere Reserve (VBR) and Kruger to Canyons Biosphere Reserve (KCBR). Kruger

National Park (KNP) lies adjacent to Limpopo’s eastern boundary. Inset represents the location of the study area within Africa.
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(Y = 0) during j = 1,. . ., Ji visits to the ith site during a season

(MacKenzie et al. 2002). We fitted models with increasing com-

plexity and used Akaike’s information criterion (AIC) for model

selection (Burnham & Anderson 2002). Within each model compo-

nent, we introduced resource variables in a fixed sequence. On iden-

tifying a preferred model, and using a backwards stepwise

approach, we tried all possible single-term deletions and retained

the most parsimonious models (K�ery, Guillera-Arroita & Lahoz-

Monfort 2013). We retained non-significant variables within candi-

date models if they increased parsimony and were ecologically jus-

tified. Model-averaging was applied to the most supported models

(DAIC ≤2). The final averaged model was used to predict w for

each sampling cell across the study area, and was used to delineate

available habitat in our S2 RSF.

SECOND- (S2 ) AND THIRD-ORDER (S3 ) SCALE OF

SELECTION

In order to assess leopard resource use at an intermediate scale,

S2 data sets were collected from 2000 to 2015 and comprised pub-

lished (n = 580 locations) (Swanepoel, Somers & Dalerum 2015)

and unpublished camera-trapping studies (n = 1745 locations; R.

Pitman/Panthera, unpublished data), expert sightings data

(n = 1384 locations) (Pitman et al. 2013) and leopard mortality

data (n = 1176 locations) (Pitman et al. 2015). We randomly dis-

tributed an equal number of available locations across the study

area, but excluded any areas where w was within the lower 25th

percentile, as described by our occupancy model. Excluding

regions within the lower 25th percentile effectively refined our

approach at the landscape-level (S2), and allowed for the exclu-

sion of areas mostly unoccupied by leopards. Although a 25th

percentile threshold could be considered arbitrary, this cut-off

adequately depicted leopard exclusion areas suggested by

previous research (Swanepoel et al. 2013).

Leopard resource use at the finest scale (i.e. home ranges) was

assessed by collating a range of S3 data sets comprising global

positioning system (GPS) collar data and expert long-term sight-

ings data of known individuals from 2004 to 2015. GPS collar

data from 18 adult leopards were obtained from provincial

research surveys (n = 2 leopards; North West Parks and Tourism

Board), published studies (n = 8 leopards) (Swanepoel, Dalerum

& van Hoven 2010; Pitman, Swanepoel & Ramsay 2012; Pitman

et al. 2013; Swanepoel et al. 2014) and unpublished research

(n = 8 leopards; R.A. Hill). GPS location accuracy metrics (e.g.

dilution of precision) were not recorded. All collars acquired a

GPS location fix ≥4 times per day over the duration of each col-

lar’s life span (n = 24 027 locations). The GPS collar data set was

filtered by removing any erroneous locations that were beyond

the possible range of the study animals (D’Eon et al. 2002).

Long-term sightings data of known adult individuals were com-

piled from the Sabi Sands Game Reserve (SSGR; n = 17 942

locations; 62 individuals). While traversing all habitat types

within SSGR, field guides are required to record daily leopard

sightings, resulting in comprehensive data sets for each known

individual (Balme et al. 2012). We generated 95% fixed-kernel

home ranges for both GPS collared and resighted individuals (us-

ing the reference bandwidth) (Worton 1989). Within each home

range, we generated an equal number of randomly distributed

locations representing available locations.

Using the same resource variables as S1 (Table S1), we

extracted mean values for each resource variable using varying

buffer radii (m) for each leopard location. This approach was

taken as large carnivore resource use is scale-dependent and sug-

gests that an optimum predictive radius exists at each order of

selection (DeCesare et al. 2012; Martin et al. 2012). Buffer radii

for S2 models comprised 250–1000 m (at 250 m increments),

1000–3000 m (at 500 m increments) and 3000–7000 (at 1000 m

increments). Buffer radii for S3 models comprised 50–200 m (at

50 m increments) and 300 m. Buffer radii for S2 and S3 models

were determined after accounting for computational efficiency

and preliminary assessments. We used fixed-effects logistic regres-

sion to compare resource values of used and available locations

for S2 scale of selection (i.e. modelling across populations), and

mixed-effects logistic regression for S3 scale of selection (fitting

leopard individual identities as a random intercept for S3, and

thus accounting for correlation and unequal sample sizes) (Gillies

et al. 2006; Fieberg et al. 2010). Correlated resource variables

(|r| > 0�7) were removed, while retaining resource variables that

produced the lowest AIC values. S2 and S3 data sets were ran-

domly subset into 80% training and 20% testing data sets to

enable internal and external model validation (Boyce et al. 2002).

Using the training data set, we ran a suite of models for each

order of selection, using resource variables at varying radii. We

employed an exhaustive screening approach and ranked candi-

date models according to AIC. We selected the most parsimo-

nious models, using a single optimum radius for each order of

selection, and if necessary, applied model-averaging to the most

supported models (DAIC ≤2) using R package glmulti (Calcagno

& de Mazancourt 2010). The distribution of S2 and S3 data sets

can be visualised in Fig. S2.

SCALE- INTEGRATED HABITAT MAPPING

The used-available designs of S2 and S3 models generated RSFs

that are proportional to the probability of use (Manly et al.

2002; DeCesare et al. 2012). Using a 30 9 30 m resolution, per

pixel predicted values (wjs) were spatially mapped across the

study area. We estimated S2 and S3 RSF predicted values (Manly

et al. 2002), as

wjsðxÞ ¼ expðb1x1 þ b2x2 þ . . .þ bkxkÞ eqn 1

We applied a linear stretch to rescale S2 and S3 RSF predicted

values between 0 and 1 (Johnson, Seip & Boyce 2004), as

ŵjs ¼ wjsðxÞ � wmin

wmax � wmin

� �
: eqn 2

To develop a scale-integrated RSF (SRSF) across the study

area representing relative probability of use for a given pixel

(wSRSF), we multiplied each scale’s probabilities (P) (Johnson,

Seip & Boyce 2004; DeCesare et al. 2012), as

wSRSF ¼ PðS2Þ � PðS3Þ eqn 3

Finally, we applied a linear stretch to rescale the resulting

SRSF between 0 and 1 using eqn (2).

MULTI -SCALE MODEL VALIDATION

We used model validation procedures to examine the predictive

capacity of single scale RSFs (S2 and S3) and scale-integrated

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology
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(SRSF) models. We reclassified models into 10 equal area bins

using percentile breaks at 10% intervals (Boyce et al. 2002).

Withheld testing data sets were used as validation points for each

scale separately (i.e. independent and partially dependent valida-

tion). We then projected validation points across the landscape,

and assigned each a bin value according to the underlying reclas-

sified landscape. We used Spearman’s rank correlation to com-

pare the frequencies of validation points in each bin to each

RSF’s bin rank (Boyce et al. 2002). A strongly predictive model

will have a high positive correlation, indicating a greater number

of locations in probability bins that approach 1 (Johnson, Seip &

Boyce 2004).

CONNECTIV ITY MAPPING

We combined our SRSF with circuit theory to explore habitat

connectivity using Circuitscape v.4.0.5 (McRae et al. 2008). We

chose circuit theory over other commonly used connectivity

methods (e.g. least-cost path) since circuit theory models move-

ment ecology via random walk pathways across all available

movement possibilities (McRae et al. 2008). The SRSF was used

as an index of conductance, where all cells are defined by net-

works of electrical nodes connected by resistors (see McRae et al.

2008 for a review). Random walk conductance modelling is anal-

ogous to habitat permeability (i.e. movement potential of an

organism across the landscape), and is directly related to the like-

lihood of a ‘walker’ choosing to move through a cell, relative to

other cells available to it (McRae et al. 2008). By predicting net

movement probabilities through electrical nodes, current flow (i.e.

permeability) can be used to identify core use areas, habitat con-

nectivity and key movement pathways (McRae et al. 2008). Con-

nectivity modelling is typically conducted between habitat

patches, or between a priori source and sink locations. However,

this is a key limitation, as animals often lack a predefined desti-

nation (Koen et al. 2014). To overcome this constraint, we devel-

oped a landscape-scale permeability map that is independent of a

priori source or destination locations by randomly placing regu-

larly distanced nodes (hereafter ‘random nodes’) around the

50 km buffer perimeter (Koen et al. 2014). Connectivity was then

measured across the landscape, from one random node to

another, in a pairwise fashion. To identify the optimum number

of random nodes required to generate an unbiased landscape-

scale permeability map, we conducted a sensitivity analysis using

10–300 random nodes at intervals of 10. Current flow was mod-

elled across all random nodes to generate 30 permeability maps.

If our estimates of permeability were independent of node place-

ment and quantity, we should expect little variation in the spatial

distribution of current flow as the number of random nodes

increases (Koen et al. 2014). To test this prediction, we removed

the buffer region and distributed 100 000 random locations

across Limpopo. The buffer region was removed prior to testing

because its inclusion would result in a biased estimate resulting

from overestimated landscape conductivity at the periphery

(Koen et al. 2010). We compared estimates extracted from each

permeability map (i.e. 10–290 node maps) against estimates from

the full permeability map (developed with 300 random nodes) by

evaluating Pearson correlation coefficients. An optimum number

of random nodes is only deemed suitable once an asymptote in

correlation coefficients is reached (Koen et al. 2014). We applied

a linear stretch to rescale the final permeability map between 0

and 1 using eqn (2).

MANAGEMENT IMPLICATIONS

To assess habitat permeability within LMUs (n = 207), we com-

pared LMU current density estimates (i.e. flow of current km�2;

total current flowLMUi

total areaLMUi

) across Limpopo (excluding KNP; n = 180)

against current density estimates from LMUs across KNP

(n = 27) using a two-sampled t-test. Using the mean current den-

sity of LMUs within KNP as an optimum baseline (KNPbase), we

categorised the permeability potential for LMUs across Limpopo

as either below-optimum (<KNPbase) or above-optimum

(>KNPbase). Given the size, low degree of human disturbance and

optimal habitat (Swanepoel et al. 2013), KNP represents an ideal

baseline on which to gauge the permeability potential of LMUs

across Limpopo. Capacity for species and environmental

monitoring is often a limiting factor; therefore, to test whether

broad-scale occupancy modelling (S1) could be used as a proxy

for landscape permeability, we ranked w estimates and compared

them against mean current density estimates within each S1
sampling cell using Spearman’s rank correlation.

Results

MODELLING RESOURCE USE AT S1

We recorded 312, 150 and 138 leopard detections during

2013, 2014 and 2015 respectively. Four top models quali-

fied for model-averaging (Table 1), while four resource

variables were removed due to collinearity (EVI, NDVI,

NPP and terrain ruggedness). Leopards selected, and were

more likely detected, in drier regions further from major

road networks. Although the parameters were likely non-

informative (95% CI overlapped with zero), leopards

appeared to avoid areas with denser vegetation, but

selected areas with more people. We assumed these two

variables were more likely associated with detection prob-

ability – particularly selection for areas closer to people,

since this might represent a bias in our survey approach.

However, we found this not to be the case as these models

were outperformed by more parsimonious models

(Table 1). Both c and ϵ were held constant, as candidate

models did not improve when resource variables were

included. The resulting predictive map (w, Fig. 2a) agreed
with previously published research (Swanepoel et al.

2013).

MODELLING RESOURCE USE AT S2 AND S3

Two vegetative resource variables (NPP and NDVI) were

removed due to collinearity at both orders. Leopard selec-

tion response to features was strongest when resource

variables were measured at radii of 7000 m (Fig. 3a) and

100 m (Fig. 3b) for S2 and S3 scales of selection respec-

tively. S2 scale of selection, model-averaging comprised

two top models. Leopards favoured areas close to riverine

and protected areas that were less rugged and at higher

elevations, but further from major road networks. Tree

canopy cover and EVI were all positively selected for,

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology
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whereas human population density was negatively selected

for (Table 2). S3 scale of selection comprised two top

models. Leopards favoured riverine areas of high

vegetative productivity (EVI and tree canopy cover) and

ruggedness, but in regions of lower precipitation

(Table 2). Model validation at S2 (partially dependent

Fig. 2. (a) Predictive map (w) depicting leopard Panthera pardus habitat use across the study area. Sampling cells outlined in red repre-

sent those that were omitted from the S2 analysis (i.e. <25th percentile). (b) RSF map at S2 scale of selection. (c) RSF map at S3 scale of

selection. (d) Scale-integrated resource selection function (SRSF). White overlay represents the administrative boundary of Limpopo

Province, South Africa. Units represent values from low (0) to high (1). [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 3. Relative DAIC (DAIC/DAICmax) of

(a) fixed- and (b) mixed-effect logistic

regression models for S2 and S3 scales of

selection respectively. Black points repre-

sent optimum resource variable sampling

radii.
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testing data set: rs = 0�99, P < 0�001; independent testing

data set: rs = 0�92, P < 0�001) and S3 (partially dependent

testing data set: rs = 1, P < 0�001; independent testing

data set: rs = 0�92, P < 0�001) scales of selection per-

formed well, and similarly for the final SRSF (partially

dependent testing data set: rs = 1, P < 0�001), suggesting
the predictive capacity of all models was very high

(Fig. 2b–d).

MODELLING LANDSCAPE-SCALE HABITAT

PERMEABIL ITY

Using the final SRSF as an index of conductance

(Fig. 2d), we developed an unbiased landscape-scale per-

meability map using ≥200 random nodes (Pearson mean

r200–290 nodes = 0�89) – note an asymptote is reached by

200 random nodes (Fig. 4). As there is no penalty to

including too many random nodes (Koen et al. 2014), we

chose to use the full map for further connectivity assess-

ments (Fig. 5a). Leopard habitat permeability was moder-

ate across Limpopo (mean current flow = 0�5 � 0�001 SE;

range: 0–1). Three distinct regions exhibited markedly low

habitat permeability (Fig. 5a). Current density of LMUs

within KNP were significantly higher (mean = 1�7 �
0�1 km�2 SE; KNPbase) than LMUs outside of KNP

(1�3 � 0�06 km�2 SE; two-sample t-test: t(46) = 3�6, P <
0�001). Using KNPbase as an optimum baseline, a total of

51 LMUs (25%; 18 198 km2) were characterised with

above-optimal permeability (Fig. 5b), while the remaining

156 LMUs (75%; 108 983 km2) were characterised with

below-optimal permeability (Fig. 5b). We detected a weak

relationship between ranked w estimates and mean current

density estimates across S1 sampling cells (rs = 0�31,
P < 0�001), suggesting occupancy modelling was a poor

predictor of landscape permeability.

Discussion

We integrated across multiple scales of resource selection

and generated an unbiased landscape-scale permeability

map that was independent of a priori source or sink loca-

tions. We demonstrated a scale-integration method cap-

able of overcoming scale-dependent limitations to

accurately predict resource use for an elusive, large carni-

vore. We compiled a range of data sets to counter the

dearth of information often attributed to large carnivore

research, which enabled the delineation of broad-scale

(S1) leopard distribution, and finer-scaled resource selec-

tion (S2 and S3), and identified key variables influencing

different scales. Given the wide-ranging dispersal capabil-

ities of leopards, and to facilitate a more informed used-

available design, we used occupancy modelling (S1) to

delineate areas available to leopards at the intermediate

(S2) scale. Occupancy modelling is being increasingly

adopted at broad-scales to address species distributions

and habitat linkages (Zeller et al. 2011; Koen et al.

2014); however, although we produced a w map that was

consistent with previous research from the same region

(Swanepoel et al. 2013), we did not find support for the

use of broad-scale occupancy modelling as a proxy for

landscape permeability. This finding suggests that man-

agement authorities should exercise caution when

attempting to use broad-scale occupancy modelling to

infer landscape-scale linkages (Zeller et al. 2011). More

specifically, we found that leopard habitat permeability

across Limpopo is moderate, and identify three key

regions that exhibit markedly low permeability. Impor-

tantly, the permeability of LMUs across Limpopo is lar-

gely below-optimal when compared to prime leopard

Table 2. Fixed-(S2) and mixed-effects (S3) logistic regression coef-

ficients from averaged models (DAIC ≤2)

Coefficient* b SE z P RI†

S2

Intercept �1�68 0�09 19�78 <0�001 1�00
d.water.7000 �0�63 0�08 7�61 <0�001 1�00
d.roads.7000 0�59 0�12 5�11 <0�001 1�00
human.7000 �6�50 0�28 23�03 <0�001 1�00
evi.7000 1�27 0�08 15�65 <0�001 1�00
elevation.7000 0�22 0�05 5�01 <0�001 1�00
t.rugged.7000 �0�52 0�06 8�38 <0�001 1�00
t.canopy.7000 0�19 0�08 2�38 0�02 1�00
d.PA.7000 �1�82 0�13 13�73 <0�001 1�00
precip.7000 0�01 0�04 0�21 0�84 0�28
S3

Intercept �0�57 0�08 6�81 <0�001 1�00
d.water.100 �0�62 0�04 16�61 <0�001 1�00
precip.100 �0�22 0�02 9�05 <0�001 1�00
evi.100 0�17 0�02 9�95 <0�001 1�00
t.rugged.100 0�12 0�01 14�72 <0�001 1�00
t.canopy.100 0�15 0�02 10�11 <0�001 1�00
dpa.100 0�12 0�14 0�84 0�40 0�57

*Resource variable prefixes: d.water – distance to water; d.roads

– distance to roads; human – human population density; evi –
environmental vegetation index; elevation – altitude; t.rugged –
terrain ruggedness; t.canopy – tree canopy cover; d.PA – distance

to protected area; precip – precipitation.

†AIC weights of relative variable importance.

Fig. 4. Pearson correlation coefficients of extracted values

(n = 100 000) from a full permeability map developed using 300

random nodes compared to extracted values from permeability

maps developed using fewer random nodes (i.e. 10–290).
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habitat, which warrants further conservation attention

and management intervention.

Obtaining data for the management of elusive animals is

challenging and often results in fragmentary data sets

(Martin et al. 2012). By incorporating multiple data sets

across multiple scales, resource selection models can be

developed that infer fine-scale spatial relationships repre-

sented by the larger population, but which are less prone

to spatial bias in resource use typically caused by limited

data sets (Martin et al. 2012; Elliot et al. 2014). Elliot et al.

(2014) demonstrated the importance of using a range of

data sets (i.e. demographic categories) when parameterising

resistance surfaces for connectivity modelling, so as not to

produce erroneous conclusions. We too advocate the use

of a range of data sets in situations where broad-scale eco-

logical and management questions are being posed for elu-

sive species that cover vast areas (i.e. leopards);

particularly since the management of these species are lar-

gely characterised by data deficiencies. Our study produced

robust estimates of leopard distribution (w) at the broadest
scale, which informed finer scale RSF analyses (i.e. by

excluding areas mostly unoccupied by leopards). Fine-scale

resource use is governed by fine-scale resource availability,

which is itself governed by broad-scale resource selection

(DeCesare et al. 2012). This hierarchically nested relation-

ship has previously been exploited for other large mam-

mals, such as woodland caribou Rangifer tarandus caribou

(DeCesare et al. 2012) and brown bear Ursus arctos

(DeCesare et al. 2012; Martin et al. 2012). However, ear-

lier studies relied on limited data sets to delineate popula-

tion distribution at the broadest scale. This potentially

limits the robustness of a used-available study design, as

available locations at finer scales might be randomly placed

within areas unoccupied by the study species. The elusive

nature and low detection rates of large carnivores calls for

a more robust framework (Ripple et al. 2014), which occu-

pancy modelling may provide.

Patterns of resource use involve balancing the trade-off

between the costs of resource acquisition against the bene-

fits of resource use (Brown, Laundr�e & Gurung 1999).

For large carnivores such as the leopard, selection trade-

offs exist between prey abundance and catchability

(Balme, Hunter & Slotow 2007), and avoidance of

intraspecific and interspecific threats (Vanak et al. 2013).

Depending on the scale, selection trade-offs can act at

differing intensities, which can render wildlife–habitat
relationships non-informative, resulting in skewed connec-

tivity metrics (Boyce 2006). Here, we demonstrated mark-

edly different scale dependencies for a highly adaptive

large carnivore (Hayward et al. 2006). Leopard distribu-

tion patterns at the broadest scale of selection (S1) were

primarily driven by a lack of major road networks. At

finer scales (S2 and S3), leopard resource use was governed

by three factors; avoidance of anthropogenic disturbance

(road networks and people), selection of prey-rich areas

(riverine features, proximity to protected areas, high EVI

and high precipitation) and selection of rugged areas with

sufficient vegetative cover likely to maximise hunting suc-

cess and minimise kleptoparasitism (Balme, Hunter & Slo-

tow 2007). By integrating across multiple scales of

resource selection, we accommodated complex leopard–
habitat relationships within a single framework capable of

generating accurate predictions of resource use necessary

for applied large carnivore management.

Free-ranging wildlife is under significant anthropogenic

pressure (Ripple et al. 2014, 2015). Land-use practices, in

particular, have led to increased fragmentation and

human–wildlife conflict (Pitman et al. 2016a). Habitat

connectivity is not only essential to maintain genetic vari-

ability (Broquet et al. 2010), trophic diversity and ecosys-

tem functions (Olds et al. 2012) but also ensures the

persistence of free-ranging charismatic species that play

an important economic role (Lindsey, Roulet & Roma-

nach 2007). Wildlife management is increasingly focused

(a)

(b)

A
B

C

Fig. 5. (a) Full permeability map developed using 300 regularly

distanced random nodes around the buffer periphery. Three key

regions (A, B and C) are characterised by markedly low habitat

permeability. Clear habitat linkages are visible between regions

A–B and B–C, which likely require focussed conservation effort.

(b) Full permeability map overlaid with above- (opaque poly-

gons) and below-optimal (transparent polygons) leopard manage-

ment units (LMUs). The SRSF, used to develop the permeability

maps, was resampled to 500 m 9 500 m for computational effi-

ciency. Units represent values from low (0) to high (1). Kruger

National Park is depicted by the dotted polygon. [Colour figure

can be viewed at wileyonlinelibrary.com]
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at the landscape-scale, where connectivity conservation

across vast regions are superseding those at smaller scales

(Koen et al. 2014). Although connectivity is typically

modelled using a source-to-sink approach (Zeller,

McGarigal & Whiteley 2012), we stress the importance of

methodologies that do not rely on a priori destination

locations. The distribution of wildlife in human-domi-

nated landscapes is poorly understood (Koen et al. 2014),

particularly at finer scales (Boyce 2006). Moreover,

knowledge of definitive source and sink locations is

severely lacking, even for a large, charismatic species such

as the leopard (Pitman et al. 2015). Using random nodes

placed around the perimeter of the buffered study area,

we modelled connectivity across the entire landscape inde-

pendent of a priori source or sink locations. This broader

applicability results in landscape permeability maps rele-

vant not only to leopard ecology and management but

also to species at comparable or lower trophic levels reli-

ant on similar habitat types.

Large carnivores have undergone significant range con-

tractions (Ray, Hunter & Zigouris 2005), leading to

increased calls for improved management and conservation

(Ripple et al. 2014). As with wildlife management more gen-

erally, large carnivore management is often implemented

across discrete geographical units (e.g. wildlife management

units, hunting concessions, administrative zones) (Messmer

et al. 1998). For instance, lions Panthera leo are typically

managed within hunting concessions (Lindsey, Roulet &

Romanach 2007), while cougar Puma concolor hunting in

Utah, USA is managed within geographical watersheds

(Stoner et al. 2013). Although connectivity is a fundamental

component of successful conservation (Zeller, McGarigal &

Whiteley 2012), connectivity metrics are infrequently consid-

ered within the regulatory processes of many range states.

This exclusionary approach is largely down to the difficulty,

and high cost, of collecting data of sufficient quality and

quantity for connectivity analyses; and often prevents man-

agement authorities from incorporating connectivity metrics

within wildlife management. Management authorities, how-

ever, frequently collect fragmentary, opportunistic data sets

such as mortality records, permit records and sightings data

(Pitman et al. 2015, 2016a,b). As our approach clearly

demonstrates, data from these multiple sources (and scales)

can be efficiently incorporated into connectivity analyses

and applied within a management context. Moreover, since

carnivore management is often focused within geographical

units (e.g. LMUs), management authorities could efficiently

address regions of low connectivity by selectively modifying

management practices (e.g. reducing trophy hunting quotas

and problem animal control within management units) to

mitigate human-mediated pressures. In our case study, we

show that three regions in Limpopo exhibit markedly low

habitat permeability and warrant urgent conservation atten-

tion. For instance, the establishment of conservancies can

greatly increase wildlife persistence by linking suitable habi-

tat (Lindsey, Romanach & Davies-Mostert 2009); therefore,

as an alternative to modifying management practices within

management units, management authorities could incen-

tivise conservancy establishment across units requiring tar-

geted management. Similarly, community engagement can

play an important role in improving perceptions and toler-

ance of carnivores (Dickman 2010). Community outreach

projects could thus be more effectively implemented if man-

agement authorities employ a multi-data, multi-scale con-

nectivity approach – as we present here – to identify

management units at risk of low permeability. Lastly, envi-

ronmental impact assessments, which are routinely con-

ducted in the region, could draw on the findings presented in

this study; particularly with regard to game ranching prac-

tices, which are leading to increased landscape fragmenta-

tion through the adoption of heavily fortified predator-

proof fencing (Pitman et al. 2016a). Although our findings

focus on a large carnivore across a biodiverse region of

southern Africa, they remain easily transferable for the man-

agement of other ecologically important species exhibiting

wide-ranging dispersal capabilities and diverse habitat

requirements.
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Details of electronic Supporting Information are provided below.

Fig. S1. Structured questionnaire survey.

Fig. S2. (a) Distribution of data sets across three orders of selec-

tion. S1 scale of selection depicted by 400 km2 red sampling cells,

(b) S2 scale of selection depicted by red point locations, and

(c) S3 scale of selection depicted by red point locations used to

develop individual leopard home ranges.

Table S1. Description of resource variables used to model leop-

ard Panthera pardus resource selection at first- (S1), second- (S2)

and third-order (S3) scales of selection.
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